对于任意一个三位正整数,百位上的数字加上个位上的数字之和恰好等于十位上的数字,则称这个三位数为“牛转乾坤数”.例如:对于三位数451,4+1=5,则451是“牛转乾坤数”;对于三位数110,1+0=1,则110是“牛转乾坤数”.
(1)求证:任意一个“牛转乾坤数”一定能被11整除;
(2)在一个“牛转乾坤数”的十位与百位之间添加1得到一个新的四位数M,若M的各位数字之和为完全平方数,求所有满足条件的“牛转乾坤数”.
【考点】完全平方数.
【答案】(1)证明见解答;
(2)143或242或341或440.
(2)143或242或341或440.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/2 11:30:1组卷:746引用:2难度:0.3