在图1-5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例:
当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现:
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究:
(1)正方形FGCH的面积是 a2+b2a2+b2;(用含a,b的式子表示)
(2)类比图1的剪拼方法,请你就图2-图4的三种情形分别画出剪拼成一个新正方形的示意图.

联想拓展:
小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移;当b>a时,如图5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.

【考点】作图—应用与设计作图.
【答案】a2+b2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:415引用:13难度:0.1
相似题
-
1.在边长为1的网格纸内分别画边长为
,5,10的三角形,并直接写出这个三角形的面积.17发布:2025/6/8 3:30:1组卷:9引用:1难度:0.6 -
2.定义:数学活动课上,陈老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做它的对等四边形.
(1)在图1,图2中,点A、B、C都在格点(小正方形的顶点)上,请在图1,图2中各画一个以格点为顶点,AB、BC为边的一个对等四边形ABCD(两个图形不全等);
(2)如图3,对等四边形ABCD中,∠ADC=90°,AB=BD=CD=10,AD=12,求BC的长.发布:2025/6/8 3:0:2组卷:100引用:3难度:0.5 -
3.由边长为1的小正方形构成网格,每个小正方形的顶点叫做格点,点A、B,C都是格点,仅用无刻度的直尺在给定9×12的网格中完成画图,画图过程用虚线表示画图结果用实线表示,并回答下列问题:
(1)直接写出AB的长是 ;
(2)在图1中,画以点A、BC为顶点且周长最大的平行四边形;
(3)在图2中,画△ABC的角平分线AD.发布:2025/6/8 4:0:1组卷:66引用:2难度:0.5