试卷征集
加入会员
操作视频

已知椭圆Ω:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与Ω有两个交点A,B,线段AB的中点为M.
(1)若m=3,点K在椭圆Ω上,F1,F2分别为椭圆的两个焦点,求
K
F
1
K
F
2
的范围;
(2)证明:直线OM的斜率与l的斜率的乘积为定值;
(3)若l过点(
m
3
m
),射线OM与Ω交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.

【考点】椭圆的几何特征
【答案】(1)[-7,1].
(2)设直线l的方程为:y=kx+b,(k≠0,b≠0),
联立方程组
y
=
kx
+
b
9
x
2
+
y
2
=
m
2
,消元得:(9+k2)x2+2kbx+b2-m2=0,
设A(x1,y1),B(x2,y2),M(x0,y0),
则x0=
1
2
(x1+x2)=-
kb
9
+
k
2
,y0=kx0+b=
9
b
9
+
k
2

∴kOM=
y
0
x
0
=-
9
k

∴直线OM的斜率与l的斜率的乘积为定值-9.
(3)能;k=4+
7
或k=4-
7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/6 8:0:9组卷:430引用:4难度:0.3
相似题
  • 1.阿基米德(公元前287年-公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C的对称轴为坐标轴,焦点在x轴上,且椭圆C的离心率为
    3
    2
    ,面积为8π,则椭圆C的方程为(  )

    发布:2024/12/29 12:0:2组卷:229引用:7难度:0.5
  • 2.已知椭圆C的两焦点分别为
    F
    1
    -
    2
    2
    0
    F
    2
    2
    2
    0
    ,长轴长为6.
    (1)求椭圆C的标准方程;
    (2)求以椭圆的焦点为顶点,以椭圆的顶点为焦点的双曲线的方程.

    发布:2024/12/29 11:30:2组卷:443引用:6难度:0.8
  • 3.已知椭圆
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的一个焦点为F(2,0),椭圆上一点P到两个焦点的距离之和为6,则该椭圆的方程为(  )

    发布:2024/12/29 12:30:1组卷:12引用:2难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正