试卷征集
加入会员
操作视频

如图,在平面直角坐标系中,直线y=-x-2与x轴交于点A,与y轴交于点B,抛物线y=-(x-m)2+m2的顶点为P,过点P分别作x轴,y轴的垂线交AB于点M,Q,直线PM交x轴于点N.
(1)若点P在y轴的左侧,且N为PM中点,求抛物线的解析式;
(2)求线段PQ长的最小值,并求出当PQ的长度最小时点P的坐标;
(3)若P,M,N三点中,任意两点都不重合,且PN>MN,求m的取值范围.

【考点】二次函数综合题
【答案】(1)y=-(x+1)2+1;
(2)PQ的最小值为
7
4
,此时点P的坐标为(-
1
2
1
4
);
(3)m的取值范围是m<-2或-2<m<-1或m>2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/28 8:51:19组卷:126引用:3难度:0.3
相似题
  • 1.如图,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过点A、B.求:
    (1)点A、B的坐标;
    (2)抛物线的函数表达式;
    (3)在抛物线对称轴上是否存在点P,使得以A、B、P为顶点的三角形为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.

    发布:2025/6/20 22:30:2组卷:491引用:4难度:0.5
  • 2.在平面直角坐标系中,点A的坐标为(a,b),若点A1的坐标是(a,|a-b|),则称点A1是点A的“关联点”.
    (1)点(-1,3)的“关联点”坐标是

    (2)点A在函数y=2x-3上,若点A的“关联点”A1与点A重合,求点A的坐标;
    (3)点A(a,b)的“关联点”A1是函数y=x2的图象上一点,当0≤a≤2时,求线段AA1长度的最大值.

    发布:2025/6/21 4:30:1组卷:174引用:2难度:0.1
  • 3.(1)在△ABC中,AB=AC=5,BC=8,点P、Q分别在射线CB、AC上(点P不与点C、点B重合),且保持∠APQ=∠ABC.
    ①若点P在线段CB上(如图),且BP=6,求线段CQ的长;

    ②若BP=x,CQ=y,求y与x之间的函数关系式,并写出函数的定义域;
    (2)正方形ABCD的边长为5(如图),点P、Q分别在直线CB、DC上(点P不与点C、点B重合),且保持∠APQ=90度.当CQ=1时,写出线段BP的长(不需要计算过程,请直接写出结果).

    发布:2025/6/21 20:0:2组卷:599引用:4难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正