(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 2<AD<82<AD<8;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

【考点】三角形综合题.
【答案】2<AD<8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:4610引用:37难度:0.3
相似题
-
1.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,动点P从点B出发沿射线BC以3cm/s的速度移动,设运动的时间为t秒.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,请直接写出此时t的值.发布:2025/6/7 13:0:1组卷:653引用:6难度:0.5 -
2.探究
(1)【问题初探】
如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD.直接写出BD与AC的位置关系和数量关系:;
(2)【问题改编】
如图2,在△ABE和△CDE中,∠AEB=∠CED=90°,AE=BE,DE=CE,连接BD,AC.求证:BD⊥AC;
(3)【问题拓展】
如图3,将(2)中的“90°”改为“60°”,(2)中的其他条件不变,若BD与AC交于点F,求∠DFC的度数.发布:2025/6/7 9:0:2组卷:32引用:2难度:0.2 -
3.如图在平面直角坐标系中,点A(-1,1),点B(m,m),其中m>1.
(1)若∠ABO=30°,求m的值;
(2)点P是x轴上一点(不与原点重合),当PA⊥PB时
①求证:PA=PB;
②直接写出点P的坐标(用含m的代数式表示);
(3)在(2)的条件下,AC⊥y轴于点C,AB交x轴于点K,求PK+KC-PO的值.发布:2025/6/7 14:0:1组卷:52引用:1难度:0.1