平面直角坐标系xOy中,正方形ABCD的四个顶点坐标分别为:A(-12,12),B(-12,-12),C(12,-12),D(12,12),P、Q是这个正方形外两点,且PQ=1.给出如下定义:记线段PQ的中点为T,平移线段PQ得到线段P'Q'(其中P',Q'分别是点P,Q的对应点),记线段P'Q'的中点为T.若点P'和Q'分别落在正方形ABCD的一组邻边上,或线段P'Q'与正方形ABCD的一边重合,则称线段TT'长度的最小值为线段PQ到正方形ABCD的“回归距离”,称此时的点T'为线段PQ到正方形ABCD的“回归点”.
(1)如图1,平移线段PQ,得到正方形ABCD内两条长度为1的线段P1Q1和P2Q2,这两条线段的位置关系为 P1Q1∥P2Q2P1Q1∥P2Q2;若T1,T2分别为P1Q1和P2Q2的中点,则点 T1T1(填T1或T2)为线段PQ到正方形ABCD的“回归点”;

(2)若线段PQ的中点T的坐标为(1,1),记线段PQ到正方形ABCD的“回归距离”为d1,请直接写出d1的最小值:5252,并在图2中画出此时线段PQ到正方形ABCD的“回归点”T'(画出一种情况即可);
(3)请在图3中画出所有符合题意的线段PQ到正方形ABCD的“回归点”组成的图形.
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
5
2
5
2
【考点】几何变换综合题.
【答案】P1Q1∥P2Q2;T1;
5
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:308引用:3难度:0.1
相似题
-
1.如图1,在Rt△ABC中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,且满足
.(1)求△ABC的周长;a2-6a+9+b-4=0
(2)点P是△ABC边上的动点,点P从点C出发,沿C→B→A的路径向终点A运动,速度为每秒1个单位,设运动时间为t.
①当AP平分∠BAC时,求t的值;
②如图2,当点P开始从B点向点A移动时,将△CBP沿直线CP对折,点B的对称点为B',当△B'CP与△ACP重叠部分为直角三角形时,请求出所有满足条件的t的值.发布:2025/6/7 8:30:2组卷:105引用:1难度:0.2 -
2.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.
(1)①如图1,∠DPC=度.
②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.
(2)如图3,若三角板PAC的边PA从PN外开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.∠CPD∠BPN发布:2025/6/8 0:0:1组卷:1320引用:4难度:0.2 -
3.在平面直角坐标系中,点A(a,-2),B (b,0),且a,b满足
+|b-2|=0.a+1
(1)点A的坐标是 ,点 B的坐标是 ;
(2)如图1,平移线段AB至CD,使点A的对应点C落在y轴正半轴上,连接AD、BD,若△ABD面积是5,求点D的坐标;
(3)如图2,在(2)的条件下,线段AB交y轴于点E,点F在射线DC上,点G是线段CO上的一动点.连接BG,∠FCO 和∠ABG的角平分线交于点H,猜想∠GBO和∠CHB的数量关系,并证明.发布:2025/6/7 19:0:2组卷:237引用:1难度:0.5