综合与实践
问题情境:综合与实践课上,老师让同学们以“正方形纸片的折叠”为主题开展数学活动,下面是同学们的折纸过程:
动手操作:
步骤一:将正方形纸片ABCD(边长为4cm)对折,使得点A与点D重合,折痕为EF,再将纸片ABCD展开,得到图1.
步骤二:将图1中的纸片ABCD的右上角沿着CE折叠,使点D落到点G的位置,连接EG,CG,得到图2.
步骤三:在图2的基础上,延长EG与边AB交于点得到图3.
问题解决:
(1)在图3中,连接HC,则∠ECH的度数为 45°45°,HB的长为 4343.
(2)在图3的基础上延长CG与边AB交于点M,如图4,试猜想AM与BM之间的数量关系,并说明理由;
(3)将图4中的正方形ABCD纸片过点G折叠,使点A落在边AD上,然后再将正方形纸片ABCD展开,折痕PQ分别与边AD,BC交于点P,Q,求GQ的长(直接写出答案).

4
3
4
3
【考点】四边形综合题.
【答案】45°;
4
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:351引用:2难度:0.1
相似题
-
1.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.
(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.发布:2025/6/13 13:0:4组卷:3236引用:5难度:0.1 -
2.阅读材料题:
浙教版九上作业本①第18页有这样一个题目:已知,如图一,P是正方形ABDC内一点,连接PA、PB、PC,若PC=2,PA=4,∠APC=135°,求PB的长.
小明看到题目后,思考了许久,仍没有思路,就去问数学老师,老师给出的提示是:将△PAC绕点A顺时针旋转90°得到△P'AB,再利用勾股定理即可求解本题.请根据数学老师的提示帮小明求出图一中线段PB的长为.
【方法迁移】:已知:如图二,△ABC为正三角形,P为△ABC内部一点,若PC=1,PA=2,PB=,求∠APB的大小.3
【能力拓展】:已知:如图三,等腰三角形ABC中∠ACB=120°,D、E是底边AB上两点且∠DCE=60°,若AD=2,BE=3,求DE的长.发布:2025/6/13 9:0:1组卷:508引用:3难度:0.1 -
3.点P是正方形ABCD所在平面内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.
(1)如图①,当P在CD边上时,直接写出BP与DQ之间的关系是 ;
(2)如图②,当P在正方形内部时,BP与DQ之间有怎样的关系?请说明理由;
(3)射线BP交DQ于E,若四边形PCQE是正方形,BC=2,CP=1,直接写出BE=.发布:2025/6/13 14:0:2组卷:157引用:5难度:0.3