当前位置:
试题详情
在空间中,取直线l为轴,直线l′与l相交于点O,其夹角为α(α为锐角),l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任取平面π,若它与轴l交角为β(π与l平行时,记β=0),则:当π2>β>α时,平面π与圆锥面的交线为椭圆椭圆.
π
2
>
β
>
α
【考点】平面与圆锥面的截线;圆锥曲线的实际背景及作用.
【答案】椭圆
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/11/26 8:0:2组卷:68引用:1难度:0.7
相似题
-
1.在空中,取直线l为轴,直线l与l′相交于O点,夹角为30°,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面.已知直线l∥平面α,l与α的距离为2,平面α与圆锥面相交得到双曲线Γ.在平面α内,以双曲线Γ的中心为原点,以双曲线的两个焦点所在直线为y轴,建立直角坐标系.
(Ⅰ)求双曲线Γ的方程;
(Ⅱ)在平面α内,以双曲线Γ的中心为圆心,半径为2的圆记为曲线Γ′,在Γ′上任取一点P,过点P作双曲线Γ的两条切线交曲线Γ′于两点M、N,试证明线段MN的长为定值,并求出这个定值.2发布:2024/11/26 8:0:2组卷:102引用:2难度:0.3