已知中心在原点,焦点在x轴上的椭圆C的离心率为12,且经过点M(1,32).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)是否存在过点P(2,1)的直线l与椭圆C相交于不同的两点A,B,满足PM2=PA•PB,若存在,求出直线l的方程;若不存在,请说明理由.
1
2
3
2
PM
2
=
PA
•
PB
【考点】椭圆与平面向量.
【答案】(Ⅰ);
(Ⅱ)存在直线l满足条件,其方程为.
x
2
4
+
y
2
3
=
1
(Ⅱ)存在直线l满足条件,其方程为
y
=
1
2
x
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:166引用:1难度:0.5
相似题
-
1.在直角坐标系xOy中,已知椭圆
的右焦点为F(1,0),过点F的直线交椭圆C于A,B两点,|AB|的最小值为C:x2a2+y2b2=1(a>b>0).2
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若与A,B不共线的点P满足,求△PAB面积的取值范围.OP=λOA+(2-λ)OB发布:2024/12/29 13:30:1组卷:105引用:3难度:0.4 -
2.椭圆C:
+x2a2=1(a>b>0)的左、右焦点分别为F1,F2,过点F1的直线l交椭圆C于A,B两点,若|F1F2|=|AF2|,y2b2=2AF1,则椭圆C的离心率为( )F1B发布:2024/12/6 18:30:2组卷:761引用:6难度:0.6 -
3.已知椭圆
=1(a>b>0)的左、右焦点分别为F1、F2,经过F1的直线交椭圆于A,B,△ABF2的内切圆的圆心为I,若3x2a2+y2b2+4IB+5IA=IF2,则该椭圆的离心率是( )0发布:2024/11/28 2:30:1组卷:1222引用:13难度:0.5