当前位置:
试题详情
图1是边长分别为a和b(a>b)的两个等边三角形纸片△ABC和△CDE叠放在一起(C与C′重合)的图形.

(1)操作:固定△ABC,将△CDE绕点C按顺时针方向旋转20°,连结AD,BE,如图2,则可证△CBE≌△CAD,依据 SASSAS,进而得到线段BE=AD,依据 全等三角形的对应边相等全等三角形的对应边相等.
(2)操作:若将图1中的△CDE,绕点C按顺时针方向旋转120°,使点B、C、D在同一条直线上,连结AD、BE,如图3.
①线段BE与AD之间是否仍存在(1)中的结论?若是,请证明;若不是,请直接写出BE与AD之间的数量关系;
②求∠APB的度数.
(3)若将图1中的△CDE,绕点C按逆时针方向旋转一个角度α(0<α<360°),当α等于多少度时,△BCD的面积最大?请直接写出答案.
【考点】几何变换综合题.
【答案】SAS;全等三角形的对应边相等
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/20 9:30:2组卷:776引用:7难度:0.3
相似题
-
1.如图,已知∠MON=α(0°<α<90°),OP是∠MON的平分线,A,B分别在OP,OM上,且AB∥ON.以点A为中心,将线段AO旋转到AC处,使点O的对应点C恰好在射线BM上,在射线ON上取一点D,使得∠BAD=180°-α.
(1)①依题意补全图;
②求证:OC=OD+AD;
(2)连接CD,若CD=OD,求α的度数,并直接写出的值.ADOD发布:2025/6/20 3:30:1组卷:417引用:5难度:0.1 -
2.如本题图①,在△ABC中,∠B=45°,∠C=30°,过点A作直线AC的垂线交BC于点D.
(1)求∠BAD的度数;
(2)若AC=2,求AB的长;2
(3)如本题图②,过点A作∠DAC的角平分线交BC于点P,点D关于直线AP的对称点为E,试探究线段CE与BD之间的数量关系,并对结论给予证明.发布:2025/6/20 3:30:1组卷:365引用:2难度:0.5 -
3.[实践与探究]
将△ABC(AB>AC)沿AD折叠,使点C刚好落在AB边上的点E处,展开如图.
[操作观察]图①中,AB=8,AC=6.
①BE=.
②若△ACD的面积是9,则△ABD的面积是 .
[理解应用]如图②,若∠C=2∠B,试说明:AB=AC+CD.
[拓展延伸]如图③,若∠BAC=60°,点G为AC的中点,且AG=5.点P是AD上的一个动点,连结PG、PC,直接写出(PG+PC)2的最小值.发布:2025/6/20 8:0:2组卷:64引用:2难度:0.2