某学习平台的答题竞赛包括三项活动,分别为“四人赛”、“双人对战”和“挑战答题”.参赛者先参与“四人赛”活动,每局第一名得3分,第二名得2分,第三名得1分,第四名得0分,每局比赛相互独立,三局后累计得分不低于6分的参赛者参加“双人对战”活动,否则被淘汰.“双人对战”只赛一局,获胜者可以选择参加“挑战答题”活动,也可以选择终止比赛,失败者则被淘汰.已知甲在参加“四人赛”活动中,每局比赛获得第一名、第二名的概率均为13,获得第三名、第四名的概率均为16;甲在参加“双人对战”活动中,比赛获胜的概率为23.
(1)求甲获得参加“挑战答题”活动资格的概率.
(2)“挑战答题”活动规则如下:参赛者从10道题中随机选取5道回答,每道题答对得1分,答错得0分.若甲参与“挑战答题”,且“挑战答题”的10道题中只有3道题甲不能正确回答,记甲在“挑战答题”中累计得分为X,求随机变量X的分布列与数学期望.
1
3
1
6
2
3
【考点】离散型随机变量的均值(数学期望).
【答案】(1);
(2)X的分布列如下表所示:
所以.
P
=
28
81
(2)X的分布列如下表所示:
X | 2 | 3 | 4 | 5 |
P | 1 12 |
5 12 |
5 12 |
1 12 |
E
(
X
)
=
7
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:207引用:7难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7
相关试卷