如图,在Rt△ABC中,AB=8.∠ACB=90°,∠A=60°,点P从点A出发,以每秒2个单位长度的速度沿AB向终点B运动,当点P不与点A、B重合时,作∠BPD=120°,边PD交折线AC-CB于点D,作点A关于直线PD的对称点为E,连接ED、EP得到△PDE.设点P的运动时间为t(秒).
(1)直接写出线段PD的长(用含t的代数式表示);
(2)当点E落在边BC上时,求t的值;
(3)设△PDE与△ABC重合部分图形的面积为S,求S与t的函数关系式;
(4)设M为AB的中点,N为ED的中点,连接MN,当MN⊥AC时,直接写出t的值.
【考点】几何变换综合题.
【答案】(1)当0<t≤2时,PD=AP=2t;当2<t<4时,PD=PB=8-2t;
(2)t=;
(3)S=
;
(4).
(2)t=
4
3
(3)S=
3 t 2 | ( 0 < t ≤ 4 3 ) |
- 7 3 2 t 2 + 12 3 t - 8 3 | ( 4 3 < t ≤ 2 ) |
3 2 t 2 - 4 3 t + 8 3 | ( 2 < t < 4 ) |
(4)
4
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/24 14:0:35组卷:86引用:1难度:0.3
相似题
-
1.【问题提出】如图1,△ABC中,AB=AC,点D在AB上,过点D作DE∥BC,交AC于E,连接CD,F,G,H分别是线段CD,DE,BC的中点,则线段FG,FH的数量关系是(直接写出结论).
【类比探究】将图1中的△ADE绕点A旋转到如图2位置,上述结论还成立吗?若成立,请给出证明;若不成立,请说明理由.
【拓展延伸】如图3,在Rt△ABC中,∠C=90°,AC=5,BC=12,点E在BC上,且BE=,过点E作ED⊥AB,垂足为D,将△BDE绕点B顺时针旋转,连接AE,取AE的中点F,连接DF.当AE与AC垂直时,线段DF的长度为(直接写出结果).61发布:2025/6/13 18:0:2组卷:1540引用:4难度:0.1 -
2.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.发布:2025/6/14 1:0:2组卷:2069引用:43难度:0.1 -
3.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图①,若∠BAC=60°,AB=AC=2,点D在线段BC上,
①∠BCE和∠BAC之间是有怎样的数量关系?不必说明理由;
②当四边形ADCE的周长取最小值时,直接写出BD的长;
(2)若∠BAC≠60°,当点D在射线BC上移动,如图②,则∠BCE和∠BAC之间有怎样的数量关系?并说明理由.发布:2025/6/14 1:30:1组卷:160引用:1难度:0.2