试卷征集
加入会员
操作视频

如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
(3)若F点恰为BC中点,求CG的长度.

【考点】四边形综合题
【答案】(1)证明见解析部分;
(2)CE+CG的值为定值4
2
,理由见解答过程;
(3)
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/7 11:0:1组卷:236引用:2难度:0.3
相似题
  • 1.(1)如图1,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,对角线BD=8,求四边形ABCD的面积;
    (2)如图2,园艺设计师想在正六边形草坪一角∠BOC内改建一个小型的儿童游乐场OMAN.其中OA平分∠BOC,OA=100米,∠BOC=120°,点M,N分别在射线OB和OC上,且∠MAN=90°,为了尽可能的少破坏草坪,要使游乐场OMAN面积最小,你认为园林规划局的想法能实现吗?若能,请求出游乐场OMAN面积的最小值;若不能,请说明理由.

    发布:2025/6/9 15:0:1组卷:243引用:2难度:0.2
  • 2.如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正方形BDEF的边长为2,将正方形BDEF绕点B旋转一周,连接AE、BE、CD.
    (1)请判断线段AE和CD的数量关系,并说明理由;
    (2)当A、E、F三点在同一直线上时,求CD的长;
    (3)设AE的中点为M,连接FM,试求线段FM长的取值范围.

    发布:2025/6/9 15:0:1组卷:209引用:1难度:0.1
  • 3.[阅读理解]
    “倍长中线”是初中数学一种重要的思想方法.如图1,在△ABC中,AD是BC边上的中线,若延长AD至E,使DE=AD,连接CE,可根据SAB证明△ABD≌△ECD,则AB=EC.

    [问题提出]
    (1)如图2,平行四边形ABCD中,点E为CD边的中点,在BC边上找一点F,使得AF=AD+CF(要求:用直尺和圆规作图,保留作图痕迹,不写作法).
    (2)按照你(1)中的作图过程证明:AF=AD+CF.

    发布:2025/6/9 15:30:2组卷:265引用:3难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正