已知,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.
(1)为探究上述问题,小王同学先画出了其中一种特殊情况,即如图1,当∠B=∠ADC=90°时.
小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG.
请你在图1中添加上述辅助线,并补全下面的思路.
小明的解题思路:先证明△ABE≌△ADG△ADG;再证明了△AEF≌△AEG△AEG,即可得出BE,EF,FD之间的数量关系为 EF=BE+FDEF=BE+FD.
(2)请你借鉴小王的方法探究图2,当∠B+∠ADC=180°时,上述结论是否依然成立,如果成立,请证明你的结论,如果不成立,请说明理由.
(3)如图3,若E、F分别是边BC、CD延长线上的点,其他已知条件不变,此时线段EF、BE、FD之间的数量关系为 EF=BE-FDEF=BE-FD.(不用证明)

1
2
【考点】三角形综合题.
【答案】△ADG;△AEG;EF=BE+FD;EF=BE-FD
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/17 7:0:2组卷:841引用:3难度:0.5
相似题
-
1.探究
(1)【问题初探】
如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD.直接写出BD与AC的位置关系和数量关系:;
(2)【问题改编】
如图2,在△ABE和△CDE中,∠AEB=∠CED=90°,AE=BE,DE=CE,连接BD,AC.求证:BD⊥AC;
(3)【问题拓展】
如图3,将(2)中的“90°”改为“60°”,(2)中的其他条件不变,若BD与AC交于点F,求∠DFC的度数.发布:2025/6/7 9:0:2组卷:32引用:2难度:0.2 -
2.如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=4cm,动点P从点B出发沿射线BC以3cm/s的速度移动,设运动的时间为t秒.
(1)求BC边的长;
(2)当△ABP为直角三角形时,求t的值;
(3)当△ABP为等腰三角形时,请直接写出此时t的值.发布:2025/6/7 13:0:1组卷:653引用:6难度:0.5 -
3.如图在平面直角坐标系中,点A(-1,1),点B(m,m),其中m>1.
(1)若∠ABO=30°,求m的值;
(2)点P是x轴上一点(不与原点重合),当PA⊥PB时
①求证:PA=PB;
②直接写出点P的坐标(用含m的代数式表示);
(3)在(2)的条件下,AC⊥y轴于点C,AB交x轴于点K,求PK+KC-PO的值.发布:2025/6/7 14:0:1组卷:52引用:1难度:0.1