对于平面直角坐标系xOy中的点M和图形W1,W2给出如下定义:点P为图形W1上一点,点Q为图形W2上一点,当点M是线段PQ的中点时,称点M是图形W1,W2的“中立点”.如果点P(x1,y1),Q(x2,y2),那么“中立点”M的坐标为(x1+x22,y1+y22).
已知,点A(-3,0),B(0,4),C(4,0).
(1)连接BC,在点D(12,0),E(0,1),F(0,12)中,可以成为点A和线段BC的“中立点”的是D、FD、F;
(2)已知点G(3,0),⊙G的半径为2,如果直线y=-x+1存在点K可以成为点A和⊙G的“中立点”,求点K的坐标;
(3)以点C为圆心,半径为2作圆,点N为直线y=2x+4上的一点,如果存在点N,使得y轴上的一点可以成为点N与⊙C的“中立点”,直接写出点N的横坐标的取值范围.
x
1
+
x
2
2
y
1
+
y
2
2
1
2
1
2
【考点】一次函数综合题.
【答案】D、F
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:894引用:5难度:0.1
相似题
-
1.如图,在平面直角坐标系xOy中,点A(0,8),点B(6,8).
(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):
①点P到A、B两点的距离相等;
②点P到∠xOy的两边距离相等.
(2)在(1)作出点P后,直接写出直线PA的解析式.发布:2025/6/24 17:0:1组卷:98引用:3难度:0.1 -
2.如图,在平面直角坐标系中,直线y=
x-23与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是( )23发布:2025/6/24 17:30:1组卷:2808引用:31难度:0.9 -
3.如图,一次函数
的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.求过B、C两点直线的解析式.y=-23x+2发布:2025/6/24 15:30:2组卷:2568引用:11难度:0.5