如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,试猜想
(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,由∠ADG=∠B=90°,得∠FDG=180°,即点F、D、G共线,易证△AFG≌△AFE△AFE,故EF、BE、DF之间的数量关系为 EF=DF+BEEF=DF+BE;
(2)如图2,点E、F分别在正方形ABCD的边CB、DC的延长线上,∠EAF=45°,连接,试猜想EF、BE、DF之间的数量关系为 EF=DF-BEEF=DF-BE,并给出证明;
(3)如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠BAD+∠EAC=45°,若BD=3,EC=6,求DE的长.

【考点】四边形综合题.
【答案】△AFE;EF=DF+BE;EF=DF-BE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:580引用:4难度:0.2
相似题
-
1.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.
(1)若∠B=60°,这时点P与点C重合,则∠NMP=度;
(2)求证:NM=NP;
(3)当△NPC为等腰三角形时,求∠B的度数.发布:2025/6/19 1:30:1组卷:2881引用:6难度:0.5 -
2.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:.
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,探求AH满足的数量关系.(可利用(2)得到的结论)发布:2025/6/17 11:30:1组卷:879引用:1难度:0.3 -
3.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,若BE⊥CD,试证明∠EFD=∠BCD.发布:2025/6/18 8:30:2组卷:215引用:3难度:0.1