如图,在平面直角坐标系中,抛物线y=-12x2+bx+c与x轴交于A(-2,0)、B(4,0)两点(点A在点B的左侧),与y轴交于点C,连接AC、BC,点P为直线BC上方抛物线上一动点,连接OP交BC于点Q.

(1)求抛物线的函数表达式;
(2)当PQOQ的值最大时,求点P的坐标和PQOQ的最大值;
(3)把抛物线y=-12x2+bx+c向右平移1个单位,再向上平移2个单位得新抛物线y',M是新抛物线上一点,N是新抛物线对称轴上一点,当以M、N、B、C为顶点的四边形是平行四边形时,写出所有符合条件的N点的坐标,并写出求解点N的坐标的其中一种情况的过程.
y
=
-
1
2
x
2
+
bx
+
c
PQ
OQ
PQ
OQ
y
=
-
1
2
x
2
+
bx
+
c
【考点】二次函数综合题.
【答案】(1)抛物线的函数表达式为y=-+x+4;
(2),P(2,4);
(3)N点的坐标为:N1(2,),N2(2,-),N3(2,-).
1
2
x
2
(2)
1
2
(3)N点的坐标为:N1(2,
5
2
11
2
5
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:414引用:1难度:0.2
相似题
-
1.如图,抛物线y=-
x2+bx+c与x轴交于A(-1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.12
(1)求抛物线的表达式;
(2)若点P在第四象限,点Q在PA的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标.发布:2025/6/7 20:0:2组卷:80引用:1难度:0.2 -
2.在平面直角坐标系xOy中,一次函数
的图象经过点B(4,0),交y轴于点A,二次函数y=x2+bx+c的图象经过点A,且对称轴为直线x=-1.y=-34x+m
(1)请求出m,b,c的值;
(2)点C为抛物线的顶点,在y轴上是否存在点P,使得以点P、O、C为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标,不必说明理由;若不存在,请说明理由;
(3)将直线AB向下平移a个单位,使得直线AB与抛物线有且只有一个交点,求a的值;
(4)点D在y轴上,且位于点A下方,点M在二次函数的图象上,点N在一次函数的图象上,使得以点A、D、M、N为顶点的四边形是菱形,求点M的坐标.发布:2025/6/8 1:0:1组卷:104引用:2难度:0.1 -
3.如图①,定义:直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点.将△AOB绕着点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫作直线l的“纠缠抛物线”,反之,直线l叫做抛物线P的“纠缠直线”,两线“互为纠缠线”.
(1)已知直线l:y=-2x+2,则它的纠缠抛物线P的函数解析式是 .
(2)判断y=-2x+2k与是否“互为纠缠线”并说明理由.y=-1kx2-x+2k
(3)如图②,已知直线l:y=-2x+4,它的纠缠抛物线P的对称轴与CD相交于点E.点F在直线l上.点Q在抛物线P的对称轴上,当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,直接写出点Q的坐标.发布:2025/6/7 21:0:1组卷:47引用:1难度:0.3