如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,直线CD相交于点D,其中AC=14,C(-6,0),D(2,8).
(1)求直线l函数表达式;
(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP沿着y轴方向平移,使得点P落在直线AB上的点P'处,求点P'到直线CD的距离;
(3)若点E为直线CD上的一点,在平面直角坐标系中是否存在点F,使以点A、D、E、F为顶点的四边形为菱形,若存在请直接写出点F的坐标;若不存在,请说明理由.

【考点】一次函数综合题.
【答案】(1)y=-x+;
(2)点P'到直线CD的距离为;
(3)存在,点F的坐标为(8+5,5)或(8-5,-5)或(-6,14)或(33,25).
4
3
32
3
(2)点P'到直线CD的距离为
7
2
2
(3)存在,点F的坐标为(8+5
2
2
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1790引用:3难度:0.2
相似题
-
1.直线l:m(2x-y-5)+(3x-8y-14)=0被以A(1,0)为圆心,2为半径的⊙A所截得的最短弦的长为( )
发布:2025/6/16 22:0:2组卷:201引用:2难度:0.9 -
2.如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
发布:2025/6/16 22:30:4组卷:6202引用:112难度:0.7 -
3.在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动.图②是P点运动的路程s(个单位)与运动时间t(秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.
(1)s与t之间的函数关系式是:;
(2)与图③相对应的P点的运动路径是:;P点出发 秒首次到达点B;
(3)写出当3≤s≤8时,y与s之间的函数关系式,并在图③中补全函数图象.发布:2025/6/16 8:0:2组卷:323引用:39难度:0.1