《九章算术》中“勾股”一章有记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问葭长几何.其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,求芦苇的长度.(1丈=10尺)
解决下列问题:
(1)示意图中,线段AF的长为 55尺,线段EF的长为 11尺;
(2)求芦苇的长度.
【考点】勾股定理的应用.
【答案】5;1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:195引用:7难度:0.5
相似题
-
1.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是( )
发布:2025/6/13 15:0:2组卷:4380引用:20难度:0.7 -
2.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从C移动到E,同时小船从A移动到B,且绳长始终保持不变.回答下列问题:
(1)根据题意可知:AC BC+CE(填“>”、“<”、“=”).
(2)若CF=5米,AF=12米,AB=9米,求小男孩需向右移动的距离.(结果保留根号)发布:2025/6/13 19:0:1组卷:744引用:17难度:0.5 -
3.如图,一根旗杆在离地面9米处断裂,旗杆总长为24米,则旗杆顶部落在离旗杆底部 米处.
发布:2025/6/13 19:0:1组卷:437引用:3难度:0.6