某学校为了解学生对新冠病毒的传播和预防知识的掌握情况,学校决定组织一次有关新冠病毒预防知识竞答.竞答分为必答题(共5题)和选答题(共2题)两部分.每位同学答题相互独立,且每道题答对与否互不影响,已知甲同学答对每道必答题的概率为34,答对每道选答题的概率为35.
(1)在必答阶段,求恰好答对3道题的概率;
(2)在选答阶段,对每个选答题,若选择回答且答对奖励10分,答错扣10分,选择放弃回答得0分.已知甲同学对于选答的两道题,选择回答和放弃回答的概率分别为23和13,试求甲同学在选答题阶段,得分X的分布列及期望.
3
4
3
5
2
3
1
3
【答案】(1),
(2)分布列见解析;.
135
512
(2)分布列见解析;
E
(
X
)
=
8
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:34引用:2难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7