如图1,在平面直角坐标系中.抛物线y=ax2+bx+2与x轴交于A(-4,0)和B(1,0),与y轴交于点C,连接AC,BC.

(1)求该抛物线的解析式;
(2)如图2,点M为直线AC上方的抛物线上任意一点,过点M作y轴的平行线,交AC于点N,过点M作x轴的平行线,交直线AC于点Q,求△MNQ周长的最大值;
(3)点P为抛物线上的一动点,且∠ACP=45°-∠BAC,请直接写出满足条件的点P的坐标.
【考点】二次函数综合题.
【答案】(1)抛物线的解析式为y=-x2-x+2;
(2)△MNQ周长最大值为6+2;
(3)P的坐标为(-5,-3)或(-,).
1
2
3
2
(2)△MNQ周长最大值为6+2
5
(3)P的坐标为(-5,-3)或(-
23
7
75
49
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1486引用:4难度:0.1
相似题
-
1.如图,抛物线y=ax2+
经过△ABC的三个顶点,点A坐标为(-1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.94
(1)求该抛物线的函数关系表达式;
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.发布:2025/6/16 19:30:1组卷:730引用:9难度:0.4 -
2.如图,已知抛物线y=ax2+bx+c过点A(6,0),B(-2,0),C(0,-3).
(1)求此抛物线的解析式;
(2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;
(3)若点Q在x轴上,点G为该抛物线的顶点,且∠QGA=45°,求点Q的坐标.发布:2025/6/16 23:0:1组卷:401引用:5难度:0.5 -
3.如图,直线y1=-x+3与x轴于交于点B,与y轴交于点C.抛物线y2=-x2+bx+c经过B、C两点,并与x轴另一个交点为A.
(1)求抛物线y2的解析式;
(2)若点M在抛物线上,且S△MOC=4S△AOC,求点M的坐标;
(3)设点P是线段BC上一动点,过P作PQ⊥x轴,交抛物线于点Q,求线段PQ长度的最大值.发布:2025/6/17 2:0:1组卷:1010引用:3难度:0.3