直线MN与PQ相互垂直,垂足为点O,点A在射线OQ上运动,点B在射线OM上运动,点A、点B均不与点O重合.
(1)如图1,AI平分∠BAO,BI平分∠ABO,若∠BAO=40°,求∠AIB的度数;
(2)如图2,AI平分∠BAO,BC平分∠ABM,BC的反向延长线交AI于点D.
①若∠BAO=40°,则∠ADB=4545度(直接写出结果,不需说理);
②点A、B在运动的过程中,∠ADB是否发生变化,若不变,试求∠ADB的度数;若变化,请说明变化规律.
(3)如图3,已知点E在BA的延长线上,∠BAO的角平分线AI、∠OAE的角平分线AF与∠BOP的角平分线所在的直线分别相交于点D、F,在△ADF中,如果有一个角的度数是另一个角的4倍,请直接写出∠ABO的度数.

【考点】三角形内角和定理.
【答案】45
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/6 14:30:2组卷:4037引用:8难度:0.3
相似题
-
1.已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=.
发布:2025/6/8 5:30:2组卷:764引用:4难度:0.6 -
2.如图,在△ABC中,∠ABC=60°,∠ACB=40°,点P为∠ABC、∠ACB的角平分线上的交点.
(1)∠BPC的度数是 .
(2)请问点P是否在∠BAC的角平分线上?请说明理由.发布:2025/6/8 5:0:1组卷:195引用:4难度:0.6 -
3.如图,在△ABC中,∠B=30°,∠C=70°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.
发布:2025/6/8 4:0:1组卷:53引用:4难度:0.6