阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;

这个结论可以推广为|x1-x2|表示在数轴上数x1,x2对应点之间的距离;
在解题中,我们会常常运用绝对值的几何意义:
例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点对应的数为±2,即该方程的x=±2;
例2:解不等式|x-1|>2.如图,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1,3,则|x-1|>2的解为x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值.在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边.若x对应点在1的右边,如图可以看出x=2;同理,若x对应点在-2的左边,可得x=-3.故原方程的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为1或-71或-7;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a对任意的x都成立,求a的取值范围.
【考点】一元一次不等式组的应用;绝对值.
【答案】1或-7
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1996引用:2难度:0.1
相似题
-
1.2021年5月19日全国徒步日,某社团组织爬山活动.组委会(活动主办方)为了奖励活动中取得了好成绩的参赛选手,计划购买共100件的甲、乙两种纪念品发放,其中甲种纪念品每件售价120元,乙种纪念品每件售价80元.
(1)如果购买甲、乙两种纪念品一共花费了9600元,求购买甲、乙两种纪念品各是多少件?
(2)设购买甲种纪念品m件,如果购买乙种纪念品的件数不超过甲种纪念品的数量的2倍,并且总费用不超过9400元.问组委会购买甲、乙两种纪念品共有几种方案?哪一种方案所需总费用最少?最少总费用是多少元?发布:2025/6/9 4:30:2组卷:256引用:2难度:0.7 -
2.对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n-
≤x<n+12,则(x)=n.如(0.49)=0,(3.51)=4.给出下列关于(x)的结论:①(π)=3;②(3x)=3(x);③若(12x-2)=5,则实数x的取值范围是11≤x<13;④当x≥0,m为非负整数时,有(m+2022x)=m+(2022x);⑤(x+y)=(x)+(y);其中,正确的结论有 (填写所有正确结论的序号).12发布:2025/6/8 20:30:2组卷:389引用:3难度:0.6 -
3.如图所示的是一个运算程序.例如:根据所给的运算程序可知,当x=5时,5×5+2=27<37,再把x=27代入,得5×27+2=137>37,则输出的值为137.若需要经过两次运算才能输出结果,则x的取值范围是 .
发布:2025/6/9 8:30:2组卷:198引用:2难度:0.6