试卷征集
加入会员
操作视频

规定抽球试验规则如下:盒子中初始装有白球和红球各一个,每次有放回的任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是白球,则记该轮为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个红球,然后接着进行下一轮抽球,如此不断继续下去,直至成功.
(1)某人进行该抽球试验时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量X,求X的分布列和数学期望;
(2)为验证抽球试验成功的概率不超过
1
2
,有1000名数学爱好者独立的进行该抽球试验,记t表示成功时抽球试验的轮次数,y表示对应的人数,部分统计数据如下:
t 1 2 3 4 5
y 232 98 60 40 20
求y关于t的回归方程
̂
y
=
̂
b
t
+
̂
a
,并预测成功的总人数(精确到1);
(3)证明:
1
2
2
+
1
-
1
2
2
1
3
2
+
1
-
1
2
2
1
-
1
3
2
1
4
2
+
+
1
-
1
2
2
1
-
1
3
2
1
-
1
n
2
1
n
+
1
2
1
2

附:经验回归方程系数:
̂
b
=
n
i
=
1
x
i
y
i
-
n
x
y
n
i
=
1
x
2
i
-
n
x
2
̂
a
=
y
-
̂
b
x

参考数据:
5
i
=
1
x
2
i
=
1
.
46
x
=
0
.
46
x
2
=
0
.
212
(其中
x
i
=
1
t
i
x
=
1
5
5
i
=
1
x
i
).

【答案】(1)分布列见解析,
29
12

(2)465,
(3)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/19 8:0:9组卷:504引用:7难度:0.4
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:195引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正