图1是运动员训练使用的带有乒乓球发射机的乒乓球台示意图.水平台面的长和宽分别为2.8m和1.6m,中间球网高度为0.15m,发射机安装于台面左侧边缘,能以不同速度向右侧不同方向水平发射乒乓球,发射点距台面高度为0.4m,乒乓球(看成点)在发射点P获得水平速度v(单位:m/s)后,从发射点向右下飞向台面,点Q是下落路线的某位置.忽略空气阻力,实验表明:P,Q的竖直距离h(单位:m)与飞出时间t(单位:s)的平方成正比,且当t=1时,h=5;P,Q的水平距离是vt(单位:m).
(1)设v=10m/s,用t表示点Q的横坐标x和纵坐标y,并求出y与x的函数关系式;(不必写x的取值范围)
(2)在(1)的条件下,
①若发球机垂直于底线向正前方发球,根据(1)中的函数关系式及题目中的数据,判断这次发球能否过网?是否出界?并说明理由;
②若球过网后的落点是右侧台面内的点M(如图3,点M距底线0.3m,边线0.3m),问发球点O在底线上的哪个位置?(参考数据:7≈2.6)
(3)将乒乓球发射机安装于台面左侧底线的中点,若乒乓球的发射速度v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上(不接触中网和底线),请直接写出v的取值范围.(结果保留根号)

7
【考点】三角形综合题.
【答案】(1)y=-x2+0.4;
(2)①这次发球能过网,会出界.理由见解答;
②发球点O在距右侧边线1.6m处,即左上角;
(3)<v<.
1
20
(2)①这次发球能过网,会出界.理由见解答;
②发球点O在距右侧边线1.6m处,即左上角;
(3)
14
5
5
106
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:239引用:1难度:0.3
相似题
-
1.综合与实践:
问题情境:数学活动课上,王老师出示了一个问题:
如图1,直线m∥n,点A、B在直线m上(点B在点A的下方),过点A作AC⊥n于点C,连接BC,以C为圆心CA为半径作弧,交直线n于点D,交BC于点E.求证:∠ABC=2∠CDE.
独立思考:(1)请解答王老师提出的问题.
实践探究:(2)DE与AC交于点P,在原有问题条件不变的情况下,王老师提出新问题,请你解答.
“猜想出AB、BC、PC的数量关系,并证明.”
问题解决:(3)过点D作DQ∥BC交m于点Q(点Q在点A上方),数学活动小组同学对上述问题进行特殊化研究之后发现,当AQ=BE时,线段BE和AB有一定的数量关系,该小组提出下面的问题,请你解答.
“如图2,当AQ=BE时,求的值.”DPAB发布:2025/6/14 20:0:1组卷:171引用:2难度:0.1 -
2.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.
(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,在某一时刻也能够使△BPD与△CPQ全等.
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都按逆时针方向沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?发布:2025/6/14 20:0:1组卷:112引用:2难度:0.3 -
3.如图1,在△ABC中,∠A=40°,外角平分线BN和CN相交于点N,求∠BNC的度数.
(1)请你先完成这个问题的解答.小明在完成以上问题的解答后,作如下变式探究:
(2)如图2,在△ABC中,∠A=80°,若∠CBN=∠CBE,∠BCM=38∠BCD,BN与CM交于点O,求∠BOC的度数.38
(3)如图3,在△ABC中,∠A=n°,若∠CBN=∠CBE,∠BCM=34∠BCD,当射线CM与BN相交时,n的取值范围是什么?试说明理由.34发布:2025/6/14 20:0:1组卷:257引用:2难度:0.4