如图1,BD是菱形ABCD的对角线,点E是边CD上一点,将△BCE沿着BE翻折,点C的对应点F恰好落在AD的延长线上,且AB=5.
(1)求证:FB平分∠AFE;
(2)如图2,若点F落在AD上.
①猜想∠ABF与∠DBE之间的数量关系,并证明你的结论;
②若DFFB=23,求证:EC=3DE.
DF
FB
=
2
3
【考点】四边形综合题.
【答案】(1)见解析;
(2)①猜想∠ABF=2∠DBE,理由见解析;②见解析.
(2)①猜想∠ABF=2∠DBE,理由见解析;②见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/9 14:30:1组卷:155引用:3难度:0.3
相似题
-
1.问题背景:
如图1,在矩形ABCD中,AB=2,∠ABD=30°,点E是边AB的中点,过点E作EF⊥AB交BD于点F.3
实验探究:
(1)在一次数学活动中,小王同学将图1中的△BEF绕点B按逆时针方向旋转90°,如图2所示,得到结论:①= ;②直线AE与DF所夹锐角的度数为 .AEDF
(2)小王同学继续将△BEF绕点B按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.
拓展延伸:
在以上探究中,当△BEF旋转至D、E、F三点共线时,则△ADE的面积为 .发布:2025/6/9 18:30:1组卷:2360引用:9难度:0.2 -
2.(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;
(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求的值;EFEG
(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.发布:2025/6/9 18:30:1组卷:674引用:7难度:0.5 -
3.[阅读理解]
“倍长中线”是初中数学一种重要的思想方法.如图1,在△ABC中,AD是BC边上的中线,若延长AD至E,使DE=AD,连接CE,可根据SAB证明△ABD≌△ECD,则AB=EC.
[问题提出]
(1)如图2,平行四边形ABCD中,点E为CD边的中点,在BC边上找一点F,使得AF=AD+CF(要求:用直尺和圆规作图,保留作图痕迹,不写作法).
(2)按照你(1)中的作图过程证明:AF=AD+CF.发布:2025/6/9 15:30:2组卷:265引用:3难度:0.1