用两种方法证明“三角形的外角和等于360°”.
如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.
求证∠BAE+∠CBF+∠ACD=360°.
证法1:∵平角等于180°平角等于180°,
∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°
∴∠BAE+∠CBF+∠ACD=540°-(∠1+∠2+∠3).
∵∠1+∠2+∠3=180°∠1+∠2+∠3=180°,
∴∠BAE+∠CBF+∠ACD=540°-180°=360°.
请把证法1补充完整,并用不同的方法完成证法2.
【考点】多边形内角与外角.
【答案】平角等于180°;∠1+∠2+∠3=180°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/7 17:0:1组卷:295引用:19难度:0.5