双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知|OA|、|AB|、|OB|成等差数列,且BF与FA同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.
OA
AB
OB
BF
FA
【考点】求双曲线的离心率.
【答案】(1);
(2)双曲线方程为:-=1.
e
=
5
2
(2)双曲线方程为:
x
2
36
y
2
9
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:2570引用:11难度:0.5
相似题
-
1.已知F1、F2为双曲线C1:
=1(a>0,b>0)的焦点,P为x2+y2=c2与双曲线C1的交点,且有tan∠PF1F2=x2a2-y2b2,则该双曲线的离心率为( )13发布:2024/12/19 0:0:2组卷:70引用:4难度:0.6 -
2.设a>1,则双曲线
的离心率e的取值范围是( )x2a2-y2(a+1)2=1发布:2024/12/29 0:0:2组卷:836引用:18难度:0.7 -
3.已知双曲线
=1(a>0,b>0)的一条渐近线的方程是y=x2a2-y2b2x,则该双曲线的离心率为( )32发布:2025/1/5 18:30:5组卷:227引用:3难度:0.7