在平面直角坐标系xOy中,点M(0,1),记动点P到直线l:y=-2的距离为d,且d=|PM|+1,设点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)直线m交曲线E于A,B两点,曲线E在点A及点B处的切线相交于点C.设点C到直线l的距离为h,若△ABC的面积为4,求证:存在定点T,使得|CT|h恒为定值.
|
CT
|
h
【考点】轨迹方程.
【答案】(1)x2=4y;
(2)见解析.
(2)见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:86引用:3难度:0.4
相似题
-
1.点P为△ABC所在平面内的动点,满足
=t(AP),t∈(0,+∞),则点P的轨迹通过△ABC的( )AB|AB|cosB+AC|AC|cosC发布:2024/12/29 6:30:1组卷:106引用:3难度:0.7 -
2.已知四棱锥P-ABCD的底面ABCD为正方形,PD⊥底面ABCD,且PD=AD=4,点E为BC的中点.四棱锥P-ABCD的所有顶点都在同一个球面上,点M是该球面上的一动点,且PM⊥AE,则点M的轨迹的长度为( )
发布:2024/12/29 8:0:12组卷:14引用:1难度:0.6 -
3.已知两个定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|.
(1)求点P的轨迹方程并说明该轨迹是什么图形;
(2)若直线l:y=kx+1分别与点P的轨迹和圆(x+2)2+(y-4)2=4都有公共点,求实数k的取值范围.发布:2024/12/29 10:30:1组卷:43引用:3难度:0.5