试卷征集
加入会员
操作视频

为了推动智慧课堂的普及和应用,A市现对全市中小学智慧课堂的应用情况进行抽样调查,统计数据如表:
经常应用 偶尔应用或者不应用 总计
农村学校 40
40
40
80
80
城市学校 60
20
20
80
80
总计 100 60 160
从城市学校中任选一个学校,偶尔应用或者不应用智慧课堂的概率是
1
4

(Ⅰ)补全上面的列联表,并判断能否有99.5%的把握认为智慧课堂的应用与区域有关;
(Ⅱ)从经常应用智慧课堂的学校中,采用分层抽样的方法抽取5个学校进行分析,然后再从这5个学校中随机抽取2个学校到所在的地域进行核实,记其中农村学校的个数为X,求X的分布列和数学期望.
附:
K
2
=
n
ad
-
bc
2
a
+
b
c
+
d
a
+
c
b
+
d
,其中n=a+b+c+d.
P(K2≥k0 0.500 0.050 0.005
k0 0.445 3.841 7.879

【答案】40;80;20;80
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/26 11:36:51组卷:3引用:1难度:0.5
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:201引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正