如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当t=2时,AP=11,点Q到AC的距离是8585;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值;若不能,请说明理由;
(4)当DE经过点C时,请直接写出t的值.
8
5
8
5
【答案】1;
8
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:714引用:42难度:0.1
相似题
-
1.抛物线y=ax2+bx-3过点A(-1,0),点B(3,0),与y轴交于C点.
(1)求抛物线的表达式及点C的坐标;
(2)如图1,设M是抛物线上的一点,若∠MAB=45°,求M点的坐标;
(3)如图2,点P在直线BC下方的抛物线上,过点P作PD⊥x轴于点D,交直线BC于点E,过P点作PF⊥BC,交BC于F点,△PEF的周长是否有最大值,若有最大值,求出此时P点的坐标;若不存在,说明理由.发布:2025/5/25 1:30:1组卷:619引用:2难度:0.3 -
2.如图,在平面直角坐标系中,抛物线y=ax2+x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C;经过点A的直线与y轴正半轴交于点E,与抛物线的另一个交点为D(4,3),其中OA=2.
(1)求此抛物线及直线的解析式;
(2)若点P是直线上方抛物线上的一个动点,当△AEP的面积最大时,求点P的坐标;
(3)若点Q是y轴上的点,且∠ADQ=45°,求点Q的坐标.发布:2025/5/25 1:30:1组卷:146引用:1难度:0.2 -
3.如图,抛物线y=-
x2+bx+c经过A、C两点,与x轴的另一交点为点B,直线y=12x+2与x轴交于点A,与y轴交于点C.12
(1)求抛物线的函数表达式;
(2)若点D为抛物线上一点,且点D与点C关于对称轴对称,求四边形ABCD的面积.
(3)点D为直线AC上方抛物线上一动点.
①连接BC、CD,设直线BD交线段AC于点E,求的最大值;DEEB
②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的∠DCF=2∠BAC,若存在,请直接写出点D的坐标.发布:2025/5/25 1:30:1组卷:371引用:2难度:0.3