试卷征集
加入会员
操作视频

阅读材料,解决问题.
材料1:我们规定:如果两个含有二次根式的因式的积中不含根号,那么就称这两个因式互为有理化因式.如
2
×
2
=2,我们称
2
2
互为有理化因式.
材料2:利用分式的基本性质和二次根式的运算性质,可以对
1
2
-
1
进行如下的化简:
1
2
-
1
=
1
×
2
+
1
2
-
1
2
+
1
=
2
+
1
2
2
-
1
=
2
+1,从而把分母中的根号化去,我们把这样的化简称为“分母有理化”.
问题:
(1)
5
+
11
与-
5
-
11
是否是互为有理化因式?并说明理由;
(2)分母有理化:
2
6
+
10

(3)化简
1
2
+
3
+
1
3
+
2
+
1
2
+
5
+…+
1
2022
+
2023

【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:102引用:6难度:0.8
相似题
  • 1.下列计算不正确的是(  )

    发布:2024/12/31 8:30:3组卷:108引用:1难度:0.6
  • 2.计算或化简:
    (1)
    2
    3
    +
    20
    12
    -
    2
    5

    (2)
    9
    m
    -
    m
    3
    1
    m
    -
    1
    2
    m
    m
    3

    (3)
    3
    12
    -
    2
    1
    3
    +
    48
    ÷
    2
    3

    (4)sin230°+cos245°+sin60°•tan45°.

    发布:2024/12/26 8:0:1组卷:8引用:1难度:0.5
  • 3.下列运算正确的是(  )

    发布:2024/12/29 18:30:4组卷:9引用:2难度:0.8
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正