如图,在梯形ABCD中,AB∥DC,AD=DC=2,AB=4,现将△ADC沿AC翻折成直二面角P-AC-B.

(1)证明:CB⊥PA;
(2)记△APB的重心为G,若异面直线PC与AB所成角的余弦值为14,在侧面PBC内是否存在一点M,使得GM⊥平面PBC,若存在,求出点M到平面PAC的距离;若不存在,请说明理由.
1
4
【考点】点、线、面间的距离计算;直线与平面垂直.
【答案】(1)证明见解析;
(2)在侧面PBC内存在一点M,使得GM⊥平面PBC,点M到平面PAC的距离为.
(2)在侧面PBC内存在一点M,使得GM⊥平面PBC,点M到平面PAC的距离为
2
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:177引用:5难度:0.4
相似题
-
1.如图AB是圆O的直径,点C是弧AB上一点,VC垂直圆O所在平面,D,E分别为VA,VC的中点.
(1)求证:DE⊥VB;
(2)若VC=CA=6,圆O的半径为5,求点E到平面BCD的距离.发布:2025/1/20 8:0:1组卷:9引用:2难度:0.5 -
2.在矩形ABCD中,AB=2,BC=1,取AB中点E,CD中点F,若沿EF将矩形AEFD折起,使得平面AEF⊥平面EFB,则AE中点Q到平面BFD的距离为.
发布:2025/1/13 8:0:2组卷:10引用:2难度:0.7 -
3.如图,在菱形ABCD中AC=1,BD=2,将△ACD沿若AC折起,使点D翻折到D'位置,连BD',直线BD'与平面ABC所成的角为22.5°,如图所示,若E为AB中点,过C作平面ABC的垂线l,在直线上取一点F,使EF∥平面AD'C,则CF的长为 .
发布:2025/1/28 8:0:2组卷:37引用:1难度:0.5