已知数列{an}.给出两个性质:
①对于{an}中任意两项aiaj(i≥j),在{an}中都存在一项ak,使得ak=aiaj;
②对于{an}中任意连续三项an,an+1,an+2,均有(an-an+1-an+2)(an-12an+1-an+2)=0.
(Ⅰ)分别判断一下两个数列是否满足性质①,并说明理由;
(i)有穷数列{an}:an=2n-1(n=1,2,3);
(ii)无穷数列{bn}:bn=2n-1(n=1,2,3,…).
(Ⅱ)若有穷数列{an}满足性质①和性质②,且各项互不相等,求项数m的最大值;
(Ⅲ)若数列{an}满足性质①和性质②,且a1>0,a2<-1,a3=2,求{an}的通项公式.
(
a
n
-
a
n
+
1
-
a
n
+
2
)
(
a
n
-
1
2
a
n
+
1
-
a
n
+
2
)
=
0
【答案】(Ⅰ)(i)有穷数列{an}不满足性质①.理由见解答;
(ii)无穷数列{bn}满足性质①.理由见解答.
(Ⅱ)3.
(Ⅲ)
.
(ii)无穷数列{bn}满足性质①.理由见解答.
(Ⅱ)3.
(Ⅲ)
a
n
=
2 n - 1 2 , n 是奇数 |
- 2 n 2 , n 是偶数 |
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:337引用:3难度:0.3
相似题
-
1.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn3}为有理数列,试证明:对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立的充要条件为.an=11+dn6bn=dn31+dn6
(3)已知sin2θ=(0<θ<2425),dn=π2,试计算bn.3tan(n•π2+(-1)nθ)发布:2024/12/22 8:0:1组卷:194引用:3难度:0.1 -
2.对于数列{an},把a1作为新数列{bn}的第一项,把ai或-ai(i=2,3,4,…,n)作为新数列{bn}的第i项,数列{bn}称为数列{an}的一个生成数列.例如,数列1,2,3,4,5的一个生成数列是1,-2,-3,4,5.已知数列{bn}为数列{
}(n∈N*)的生成数列,Sn为数列{bn}的前n项和.12n
(Ⅰ)写出S3的所有可能值;
(Ⅱ)若生成数列{bn}满足S3n=(1-17),求数列{bn}的通项公式;18n
(Ⅲ)证明:对于给定的n∈N*,Sn的所有可能值组成的集合为{x|x=,k∈N*,k≤2n-1}.2k-12n发布:2024/12/28 23:30:2组卷:125引用:6难度:0.1 -
3.2023年是我国规划的收官之年,2022年11月23日全国22个省份的832个国家级贫困县全部脱贫摘帽.利用电商平台,开启数字化科技优势,带动消费扶贫起到了重要作用.阿里研究院数据显示,2013年全国淘宝村仅为20个,通过各地政府精准扶贫,与电商平台不断合作创新,2014年、2015年、2016年全国淘宝村分别为212个、779个、1311个,从2017年起比上一年约增加1000个淘宝村,请你估计收官之年全国淘宝村的数量可能为( )
发布:2024/12/18 13:30:2组卷:94引用:1难度:0.9
相关试卷