如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A'B'O.
(1)有一条抛物线经过点A',B',B,求该抛物线的解析式.
(2)设该抛物线的一个动点P的横坐标为t.
①当0<t<2时,求四边形ABPB'的面积S与t的函数关系式,并求出S的最大值;
②点Q是直线AB上的一个动点,若以AB'为边,点A,B',Q,P为顶点的四边形是平行四边形,请求出所有符合条件的t的值.

【考点】二次函数综合题.
【答案】(1)y=-x2+x+2;
(2)①S=-t2+2t+1(0<t<2),S的最大值为2;
②或或.
(2)①S=-t2+2t+1(0<t<2),S的最大值为2;
②
3
2
3
+
41
4
3
-
41
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:121引用:1难度:0.3
相似题
-
1.已知抛物线y=ax2+bx-3经过点A(1,0),B(-2,-3),顶点为点P,与y轴交于点C.
(1)求该抛物线的表达式以及顶点P的坐标;
(2)将抛物线向上平移m(m>0)个单位后,点A的对应点为点M,若此时MB∥AC,求m的值;
(3)设点D在抛物线y=ax2+bx-3上,且点D在直线BC上方,当∠DBC=∠BAC时,求点D的坐标.发布:2025/5/24 11:30:1组卷:471引用:1难度:0.3 -
2.平面直角坐标系xOy中,抛物线y=ax2-3ax+1与y轴交于点A.
(1)求点A的坐标及抛物线的对称轴;
(2)当-1≤x≤2时,y的最大值为3,求a的值;
(3)已知点P(0,2),Q(a+1,1).若线段PQ与抛物线只有一个公共点,结合函数图象,求a的取值范围.发布:2025/5/24 10:30:2组卷:1465引用:13难度:0.2 -
3.如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于A(-1,0),B(3,0)两点.
(1)求抛物线的解析式;
(2)已知点D(0,-1),点P为线段BC上一动点,连接DP并延长交抛物线于点H,连结BH,当四边形ODHB的面积为时,求点H的坐标;112
(3)已知点E为x轴上一动点,点Q为第二象限抛物线上一动点,以CQ为斜边作等腰直角三角形CEQ,请直接写出点E的坐标.发布:2025/5/24 10:30:2组卷:772引用:4难度:0.1