在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:
(1)能否出现AC⊥BC的情况?说明理由;
(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.
【考点】圆与圆锥曲线的综合.
【答案】(1)不能出现AC⊥BC的情况,理由如下:
曲线y=x2+mx-2与x轴交于A、B两点,
可设A(x1,0),B(x2,0),
由韦达定理可得x1x2=-2,
若AC⊥BC,则kAC•kBC=-1,
即有•=-1,
即为x1x2=-1这与x1x2=-2矛盾,
故不出现AC⊥BC的情况;
(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
由题意可得y=0时,x2+Dx+F=0与x2+mx-2=0等价,
可得D=m,F=-2,
圆的方程即为x2+y2+mx+Ey-2=0,
由圆过C(0,1),可得0+1+0+E-2=0,可得E=1,
则圆的方程即为x2+y2+mx+y-2=0,
另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),
令x=0,可得y2+y-2=0,
解得y=1或-2.
即有圆与y轴的交点为(0,1),(0,-2),
则过A、B、C三点的圆在y轴上截得的弦长为定值3.
曲线y=x2+mx-2与x轴交于A、B两点,
可设A(x1,0),B(x2,0),
由韦达定理可得x1x2=-2,
若AC⊥BC,则kAC•kBC=-1,
即有
1
-
0
0
-
x
1
1
-
0
0
-
x
2
即为x1x2=-1这与x1x2=-2矛盾,
故不出现AC⊥BC的情况;
(2)证明:设过A、B、C三点的圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
由题意可得y=0时,x2+Dx+F=0与x2+mx-2=0等价,
可得D=m,F=-2,
圆的方程即为x2+y2+mx+Ey-2=0,
由圆过C(0,1),可得0+1+0+E-2=0,可得E=1,
则圆的方程即为x2+y2+mx+y-2=0,
另解:设过A、B、C三点的圆在y轴上的交点为H(0,d),
令x=0,可得y2+y-2=0,
解得y=1或-2.
即有圆与y轴的交点为(0,1),(0,-2),
则过A、B、C三点的圆在y轴上截得的弦长为定值3.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:6260引用:11难度:0.3
相似题
-
1.一个酒杯的截面是抛物线的一部分,其方程x2=2y(0≤y≤20),杯内放入一个球,要使球触及杯底部,则球的半径的取值范围为( )
发布:2025/1/5 23:30:4组卷:59引用:1难度:0.5 -
2.已知点M(1,2),点P在抛物线y2=8x上运动,点Q在圆(x-2)2+y2=1上运动,则|PM|+|PQ|的最小值为( )
发布:2024/12/28 23:0:1组卷:211引用:2难度:0.8 -
3.已知双曲线C:
-x2a2=1(a>0,b>0)的左,右顶点分别是A1,A2,圆x2+y2=a2与C的渐近线在第一象限的交点为M,直线A1M交C的右支于点P,若△MPA2是等腰三角形,且∠PA2M的内角平分线与y轴平行,则C的离心率为( )y2b2发布:2024/12/17 19:30:2组卷:319引用:5难度:0.6