如图,在平面直角坐标系中,直线BC的解析式为y=-x+6,直线BC交x轴和y轴分别于点B和点C,抛物线y=-29x2+bx+c交x轴于点A和点B,交y轴于点C.

(1)求抛物线的解析式;
(2)点P是第二象限抛物线上的点,连接PB、PC,设点P的横坐标为t,△PBC的面积为S.求S与t的函数关系式(不要求写出t的取值范围);
(3)在(2)的条件下,点D在线段OB上,连接PD、CD,∠PDC=45°,点F在线段BC上,EF⊥BC,FE的延长线交x轴于点G,交PD于点E,连接CE,若∠GED+∠DCE=180°,DC>DE,S△CDE=15,求点P的横坐标.
y
=
-
2
9
x
2
+
bx
+
c
【考点】二次函数综合题.
【答案】(1);
(2);
(3)P的横坐标是.
y
=
-
2
9
x
2
+
1
3
x
+
6
(2)
S
=
2
3
t
2
-
4
t
(3)P的横坐标是
3
-
3
11
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:141引用:1难度:0.2
相似题
-
1.如图1,平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A(1,0),B(-3,0)两点,交y轴于点C(0,3),点M是线段OB上一个动点,过点M作x轴的垂线,交直线BC于点F,交抛物线于点E.
(1)求抛物线的解析式;
(2)当△BCE面积最大时,求M点的坐标;
(3)如图2,是否存在以点C、E、F为顶点的三角形与△ABC相似,若存在,求点M的坐标;若不存在,请说明理由.发布:2025/5/23 10:30:1组卷:611引用:5难度:0.1 -
2.如图,已知抛物线y=-x2+bx+c与直线AB交于点A(-3,0),点B(1,4).
(1)求抛物线的解析式;
(2)点M是x轴上方抛物线上一点,点N是直线AB上一点,若以A、O、M、N为顶点为顶点的四边形是以OA为边的平行四边形,求点M的坐标.发布:2025/5/23 10:30:1组卷:920引用:3难度:0.2 -
3.如图,已知抛物线y=ax2+bx-3的图象与x轴交于点A(1,0)和B(3,0),与y轴交于点C.D是抛物线的顶点,对称轴与x轴交于E.
(1)求抛物线的解析式;
(2)如图1,在抛物线的对称轴DE上求作一点M,使△AMC的周长最小,并求出点M的坐标和周长的最小值.
(3)如图2,点P是x轴上的动点,过P点作x轴的垂线分别交抛物线和直线BC于F、G.设点P的横坐标为m.是否存在点P,使△FCG是等腰三角形?若存在,直接写出m的值;若不存在,请说明理由.发布:2025/5/23 10:0:1组卷:3750引用:13难度:0.4