已知椭圆C:x2a2+y2b2=1(a>b>0)经过点A(0,1),且离心率为63.
(1)求椭圆C的方程;
(2)椭圆C上的两个动点M,N(M,N与点A不重合)直线AM,AN的斜率之和为4,作AH⊥MN于H.
问:是否存在定点P,使得|PH|为定值.若存在,求出定点P的坐标及|PH|的值;若不存在,请说明理由.
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
6
3
【考点】椭圆的定点及定值问题.
【答案】(1);(2)存在AQ的中点P(,0),使得|PH|=|AQ|=.
x
2
3
+
y
2
=
1
-
1
4
1
2
17
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/11/16 2:0:1组卷:256引用:6难度:0.5
相似题
-
1.点
在椭圆C:M(2,1)上,且点M到椭圆两焦点的距离之和为x2a2+y2b2=1(a>b>0).25
(1)求椭圆C的方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点,在x上是否存在点若P使得为定值?若存在,求出P点坐标,若不存在,说明理由.PA•PB发布:2024/10/21 13:0:2组卷:71引用:1难度:0.1 -
2.已知椭圆C:
的左顶点为A(-2,0),焦距为x2a2+y2b2=1(a>b>0).动圆D的圆心坐标是(0,2),过点A作圆D的两条切线分别交椭圆于M和N两点,记直线AM、AN的斜率分别为k1和k2.23
(1)求证:k1k2=1;
(2)若O为坐标原点,作OP⊥MN,垂足为P.是否存在定点Q,使得|PQ|为定值?发布:2024/10/18 2:0:2组卷:95引用:2难度:0.3 -
3.分别过椭圆E:
x2a2=1(a>b>0)左、右焦点F1、F2的动直线l1,l2相交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1-k3=k4-k2,已知当l1与x轴重合时,|AB|=2+y2b2,|CD|=5.255
(1)求椭圆E的方程;
(2)是否存在定点M,N,使得|PM|+|PN|为定值?若存在,求出M、N点坐标,若不存在,说明理由.发布:2024/10/12 2:0:2组卷:100引用:2难度:0.4