如图,在平面直角坐标系xOy中,抛物线y=-x2+2cx+c与x轴交于点A和B(点A在点B的左侧),与y轴交于点C(0,2).P是抛物线上一动点(不与点C重合),过点C作平行于x轴的直线,过点P作PD∥y轴交CD于点D.

(1)求抛物线的解析式;
(2)当△CDP为等腰直角三角形时,求点D的坐标;
(3)将△CDP绕点C顺时针旋转45°,得到△CD'P′(点D和P分别对应点D'和P′),若点P′恰好落在坐标轴上,请直接写出此时点P的坐标.
2
2
【考点】二次函数综合题.
【答案】(1)y=-x2+2x+;
(2)点D的坐标为(3,)或(1,);
(3)点P的坐标为(3,-3)或(-1,-3).
2
(2)点D的坐标为(3,
2
2
(3)点P的坐标为(3,
2
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:1081引用:4难度:0.1
相似题
-
1.在平面直角坐标系中,抛物线y=ax2+bx-6(a≠0)与x轴交于点A(-3,0)和点B(1,0),与y轴交于点C,点D在抛物线的对称轴上.
(1)若点E在x轴下方的抛物线上,求△ABE面积的最大值.
(2)抛物线上是否存在一点F,使得以点A,C,D,F为顶点的四边形为平行四边形?若存在,求出点F的坐标,若不存在,请说明理由.发布:2025/5/23 3:30:1组卷:160引用:1难度:0.5 -
2.如图,抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)与x轴交于A,B两点,与y轴交于点C,已知OA=OC=4OB=4.
(1)求抛物线的函数表达式;
(2)连接BC,AC,若点D在x轴的下方,以A、B、D为顶点的三角形与△ABC全等,平移这条抛物线,使平移后的抛物线经过点B与点D,请求出平移后所得抛物线的函数表达式,并写出平移过程.发布:2025/5/23 3:30:1组卷:37引用:2难度:0.3 -
3.已知二次函数y=x2+bx+c的图象与x轴交于A(1,0)和B(-3,0),与y轴交于点C.
(1)求该二次函数的表达式.
(2)如图1,连接BC,动点D以每秒1个单位长度的速度由A向B运动,同时动点E以每秒个单位长度的速度由B向C运动,连接DE,当点E到达点C的位置时,D、E同时停止运动,设运动时间为t秒.当△BDE为直角三角形时,求t的值.2
(3)如图2,在抛物线对称轴上是否存在一点Q,使得点Q到x轴的距离与到直线AC的距离相等,若存在,求出点Q的坐标;若不存在,请说明理由.发布:2025/5/23 4:0:1组卷:584引用:4难度:0.3