已知双曲线C={(x,y)|ax2-by2=1(a>0,b>0)}和集合Q={(x,y)|0<ax2-by2<1(a>0,b>0)},直角坐标平面内任意点N(x0,y0),直线l:ax0x-by0y=1称为点N关于双曲线C的“相关直线”.
(I)若N∈C,判断直线l与双曲线C的位置关系,并说明理由;
(II)若直线l与双曲线C的一支有2个交点,求证:N∈Q;
(Ⅲ)若点N∈Q,点M在直线l上,直线MN交双曲线C于A,B,求证:|MA||AN|=|MB||BN|.
|
MA
|
|
AN
|
=
|
MB
|
|
BN
|
【考点】直线与圆锥曲线的综合;双曲线的几何特征.
【答案】(Ⅰ)直线l与双曲线C相切,理由见解析;(Ⅱ)证明见解析;(Ⅲ)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:86引用:2难度:0.5
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:96引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7