已知椭圆C:x2a2+y2b2=1,过定点T(t,0)的直线交椭圆于P,Q两点,其中t∈(0,a).
(1)若椭圆短轴长为23且经过点(-1,32),求椭圆方程;
(2)对(1)中的椭圆,若t=3,求△OPQ面积的最大值;
(3)在x轴上是否存在点S(s,0)使得∠PST=∠QST恒成立?如果存在,求出s,t的关系;如果不存在,说明理由.
x
2
a
2
+
y
2
b
2
3
3
2
3
【考点】直线与椭圆的综合.
【答案】(1);(2);(3)存在,st=a2.
x
2
4
+
y
2
3
=
1
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:145引用:1难度:0.2
相似题
-
1.设椭圆
+x2a2=1(a>b>0)的右顶点为A,上顶点为B.已知椭圆的离心率为y2b2,|AB|=53.13
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx(k<0)与椭圆交于P,Q两点,直线l与直线AB交于点M,且点P,M均在第四象限.若△BPM的面积是△BPQ面积的2倍,求k的值.发布:2024/12/29 12:30:1组卷:4565引用:26难度:0.3 -
2.已知椭圆C:
=1(a>b>0)的一个顶点坐标为A(0,-1),离心率为x2a2+y2b2.32
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线y=k(x-1)(k≠0)与椭圆C交于不同的两点P,Q,线段PQ的中点为M,点B(1,0),求证:点M不在以AB为直径的圆上.发布:2024/12/29 12:30:1组卷:371引用:4难度:0.5 -
3.如果椭圆
的弦被点(4,2)平分,则这条弦所在的直线方程是( )x236+y29=1发布:2024/12/18 3:30:1组卷:460引用:3难度:0.6