如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,点D是抛物线的顶点.
(1)求抛物线解析式;
(2)求开口向下的二次函数的最大值时采用的步骤是:第一,求出二次函数的顶点坐标(-b2a,4ac-b24a);第二,确定自变量x的取值范围;第三,判定x=-b2a是否在其范围内,若在,则最大值是顶点纵坐标,若不在,要根据其增减性求最大值,即当m≤x≤n<-b2a(m<n)时,x=n时,y最大;当-b2a<m≤x≤n(m<n)时,x=m时,y最大.
若t<0,t≤x≤t+1时,二次函数y=-x2+bx+c的最大值是t,求t的值.
(3)如图,若点P是第一象限抛物线上一点,且∠DAP=45°,求点P的坐标.
b
2
a
4
ac
-
b
2
4
a
b
2
a
b
2
a
b
2
a
【考点】二次函数综合题.
【答案】(1)抛物线解析式为y=-x2+2x+3;
(2)t的值为;
(3)点P的坐标是(,).
(2)t的值为
-
1
-
17
2
(3)点P的坐标是(
8
3
11
9
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:260引用:1难度:0.3
相似题
-
1.如图,在平面直角坐标系xOy中,抛物线y=ax2+2x+c(a≠0)与x轴交于点A(-1,0)和点B,交y轴于点C(0,3),顶点为D.
(1)求抛物线解析式;
(2)点E为线段BD上的一个动点,作EF⊥x轴于点F,连接OE,当△OEF面积最大时.求点E的坐标;
(3)G是第四象限内抛物线上一点,过点G作GH⊥x轴于点H,交直线BD于点K、且OH=GK,作直线AG.145
①点G的坐标是 ;
②P为直线AG上方抛物线上一点,过点P作PQ⊥AG于点Q,取点M(0,),点N为平面内一点,若四边形MPNQ是菱形,请直接写出菱形的边长.74发布:2025/5/25 5:30:2组卷:984引用:2难度:0.1 -
2.如图,抛物线y=-
x2+bx+c过点A(3,2),且与直线y=-x+12交于B、C两点,点B的坐标为(4,m).72
(1)求抛物线的解析式;
(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;
(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.发布:2025/5/25 6:0:1组卷:5787引用:26难度:0.1 -
3.如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=
.52
(1)求抛物线的解析式;
(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;
(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.发布:2025/5/25 6:0:1组卷:3234引用:20难度:0.4
相关试卷