3如图,平行四边形ABCD中,AC⊥BC于C,AB=10,sinB=35,经过点C作圆O和AB边切于E点(E点可与点A、B重合),分别交BC边,AC边于点F,G.

(1)BC的长为 88;
(2)若点O在边BC上,求ˆCF的长;
(3)嘉琪说:“若点E与点A重合,则点D一定在圆O上”.你觉得嘉琪的判断对吗?请说明理由;
(4)设圆O的半径为r,直接写出r的取值范围.
sin
B
=
3
5
ˆ
CF
【考点】圆的综合题.
【答案】8
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:117引用:1难度:0.2
相似题
-
1.如图,在Rt△ABC中,∠ACB=90°,点E、O分别在AB、BC边上,且AC=AE,以点O为圆心,OC长为半径的⊙O经过点E,交BC边于点D,连接AD交⊙O于点F.
(1)求证:AB是⊙O的切线;
(2)若BD=2,BE=4,求⊙O的半径及tan∠EAD的值;
(3)在(2)的条件下,求证:点F是的中点.ˆCED发布:2025/6/13 10:30:1组卷:44引用:1难度:0.4 -
2.【阅读材料】如图1所示,对于平面内⊙P,在⊙P上有弦AB,取弦AB的中点M,我们把弦AB的中点M到某点或某直线的距离叫做弦AB到这点或者这条直线的“密距”.例如:图1中线段MO的长度即为弦AB到原点O的“密距”,过点M作y轴的垂线交y轴于点N,线段MN的长度即为弦AB到y轴的“密距”.
【类比应用】已知⊙P的圆心为P(0,8),半径为4,弦AB的长度为4,弦AB的中点为M.
(1)当AB∥y轴时,如图2所示,圆心P到弦AB的中点M的距离是 ,此时弦AB到原点O的“密距”是 .
(2)①如果弦AB在⊙P上运动,在运动过程中,圆心P到弦AB的中点M的距离变化吗?若不变化,请求出PM的长,若变化,请说明理由.
②直接写出弦AB到原点的“密距”d的取值范围 ;
【拓展应用】如图3所示,已知⊙P的圆心为P(0,8),半径为4,点A(0,4),点B为⊙P上的一动点,弦AB到直线y=-x-6的“密距”的最大值是 (直接写出答案).发布:2025/6/13 11:0:2组卷:198引用:3难度:0.2 -
3.在平面直角坐标系xOy中,给定⊙C,若将线段AB绕原点O逆时针旋转α(0°<α<180°),使得旋转后对应的线段A′B′所在直线与⊙C相切,并且切点P在线段A′B′上,则称线段AB是⊙C的旋转切线段,其中满足题意的最小的α称为关于⊙C和线段AB的最小旋转角.
已知C(0,2),⊙C的半径为1.
(1)如图1,A(2,0),线段OA是⊙C的旋转切线段,写出关于⊙C和线段OA的最小旋转角为 °;
(2)如图2,点A1,B1,A2,B2,A3,B3的横、纵坐标都是整数.在线段A1B1,A2B2,A3B3中,⊙C的旋转切线段是 ;
(3)已知B(1,0),D(t,0),若线段BD是⊙C的旋转切线段,求t的取值范围;
(4)已知点M的横坐标为m,存在以M为端点,长度为的线段是⊙C的旋转切线段,直接写出m的取值范围.3发布:2025/6/13 11:30:2组卷:258引用:4难度:0.1