(1)探索发现:
如图1,在△ABC中,点D在边BC上,△ABD与△ADC的面积分别记为S1与S2,试判断S1S2与BDCD的数量关系,并说明理由.
(2)阅读分析:
小鹏遇到这样一个问题:如图2,在Rt△ABC中,AB=AC,∠BAC=90°,射线AM交BC于点D,点E、F在AM上,且∠1=∠2=90°,试判断BF、CE、EF三条线段之间的数量关系.
小鹏利用一对全等三角形,经过推理使问题得以解决.
图2中的BF、CE、EF三条线段之间的数量关系为 CE=EF+BFCE=EF+BF,并说明理由.
(3)类比探究:
如图3,在四边形ABCD中,AB=AD,AC与BD交于点O,点E、F在射线AC上,且∠1=∠2=∠BAD.
①全等的两个三角形为 △ABC≌△DAE△ABC≌△DAE;
②若OD=3OB,△AED的面积为2,直接写出△CDE的面积.

S
1
S
2
BD
CD
【考点】四边形综合题.
【答案】CE=EF+BF;△ABC≌△DAE
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/12 21:0:1组卷:1299引用:3难度:0.3
相似题
-
1.将纸片△ABC沿DE折叠使点A落在点A'处.
【感知】如图①,点A落在四边形BCDE的边BE上,则∠A与∠1之间的数量关系是 ;
【探究】如图②,若点A落在四边形BCDE的内部,则∠A与∠1+∠2之间的数量关系是 ;
【拓展】如图③,点A落在四边形BCDE的外部,若∠1=80°,∠2=24°,则∠A的大小为 .发布:2025/6/17 4:30:1组卷:309引用:4难度:0.4 -
2.如图1,在Rt△ABC中,∠ACB=90°,∠CAB=30°,点D在边AB上以CD为底边作等腰直角△CDP(点P,A在直线CD的两侧),射线CP交直线AB于点E.
(1)若点D是AB的中点,且BC=2,求DP的长;
(2)当△CDE是等腰三角形时,求∠BCE的度数;
(3)如图2,设AP=a,求四边形ADPC面积的最小值.(用含a的式子表示)发布:2025/6/17 4:30:1组卷:26引用:1难度:0.4 -
3.如图,在菱形ABCD中,对角线AC,BD交于点O.
(1)若AB=5,AC=8,则菱形ABCD的面积是 ;
(2)点F在BC上,AF交BD于点E,若BE=BF,求证:CF=2OE;
(3)点P在射线AC上,且∠PDO=,若AC=16,AD=10,则DP的长为 .12∠PCD发布:2025/6/17 4:30:1组卷:164引用:2难度:0.1