如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.
(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?
解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为∠EPF=∠AEP+∠PFC∠EPF=∠AEP+∠PFC,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为∠AEP+∠EPF+∠PFC=360°∠AEP+∠EPF+∠PFC=360°.
(2)如图3,QE,QF分别平分∠PEB和∠PFD,且点P在EF左侧.
①若∠EPF=60°,则∠EQF=150°150°.
②猜想∠EPF与∠EQF的数量关系,并说明理由;
③如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2018F满足怎样的数量关系?(直接写出结果)

【考点】平行线的性质.
【答案】∠EPF=∠AEP+∠PFC;∠AEP+∠EPF+∠PFC=360°;150°
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:6235引用:4难度:0.3