已知定义在R上的单调函数f(x),存在实数x0,使得对于任意实数x1,x2总有f(x0x1+x0x2)=f(x0)+f(x1)+f(x2)恒成立
(1)求x0的值;
(2)若f(x0)=1,且对任意正整数n,有an=1f(n),bn=f(12n)+1,记Sn=a1a2+a2a3+…+anan+1,Tn=b1b2+b2b3+…+bnbn+1,求Sn和Tn;
(3)若不等式an+1+an+2+…+a2n>435[log12(x+1)-log12(9x2-1)+1]对任意不小于2的正整数n都成立,求x的取值范围.
1
f
(
n
)
,
b
n
=
f
(
1
2
n
)
+
1
4
35
[
lo
g
1
2
(
x
+
1
)
-
lo
g
1
2
(
9
x
2
-
1
)
+
1
]
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:24引用:3难度:0.5
相似题
-
1.已知点A
是函数f(x)=ax(a>0且a≠1)的图象上一点,等比数列an的前n项和为f(n)-c,数列bn(bn>0)的首项为c,且前n项和Sn满足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求数列{an}与{bn}的通项公式.
(2)若数列的前n项和为Tn,问满足Tn{1bnbn+1}的最小整数是多少?>10002011
(3)若,求数列Cn的前n项和Pn.Cn=-2bnan发布:2025/1/12 8:0:1组卷:36引用:3难度:0.1 -
2.已知一组2n(n∈N*)个数据:a1,a2,…,a2n,满足:a1≤a2≤…≤a2n,平均值为M,中位数为N,方差为s2,则( )
发布:2024/12/29 7:30:2组卷:54引用:4难度:0.5 -
3.已知公比为q的正项等比数列{an},其首项a1>1,前n项和为Sn,前n项积为Tn,且函数f(x)=x(x+a1)(x+a2)⋯(x+a9)在点(0,0)处切线斜率为1,则( )
发布:2024/12/29 10:30:1组卷:36引用:3难度:0.5