我国古代数学家研究过一元二次方程的正数解的几何解法.以方程x2+2x-35=0,即x(x+2)=35为例加以说明,三国时期的数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造如图中大正方形的面积是(x+x+2)2,同时它又等于四个矩形的面积加上中间小正方形的面积,即4×35+22,据此易得x=5.小刚用此方法解关于x的方程x2+mx-n=0时,构造出同样的图形,已知大正方形的面积为81,小正方形的面积为25,则关于x的方程x2+mx-n=0的正数解为( )
【答案】D
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/17 8:0:9组卷:512引用:4难度:0.5
相似题
-
1.随着人民生活水平的提高,汽车进入家庭的越来越多.我市某小区在2007年底拥有家庭轿车64辆,到了2009年底,家庭轿车数为100辆.
(1)若平均每年轿车数的增长率相同,求这个增长率.
(2)为了缓解停车矛盾,多增加一些车位,该小区决定投资15万元,再造一些停车位.据测算,建造一个室内停车位,需5000元;建造一个室外停车位,需1000元.按实际情况考虑,计划室外停车位数不少于室内车位的2倍,又不能超过室内车位的2.5倍.问,该小区有哪几种建造方案?应选择哪种方案最合理?发布:2025/9/14 19:30:2组卷:289引用:2难度:0.1 -
2.某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:
(1)该企业2007年盈利多少万元?
(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?发布:2025/9/14 21:0:1组卷:765引用:78难度:0.5 -
3.某县位于沙漠边缘地带,治理沙漠、绿化家乡是全县人民的共同愿望,到1998年底,全县沙漠的绿化率已达30%,此后政府计划在近几年内,每年将当年年初未被绿化的沙漠面积的m%进行绿化,到2000年底,全县沙漠的绿化率已达43.3%,求m值.(注:沙漠绿化率=
)已被绿化的沙漠总面积原有沙漠总面积(含已被绿化部分)发布:2025/9/14 21:0:1组卷:178引用:5难度:0.1