试卷征集
加入会员
操作视频

如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即
1
2
ab
×
4
+
b
-
a
2
,从而得到等式c2=
1
2
ab
×
4
+
b
-
a
2
,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题
(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.
(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.

【考点】勾股定理的证明
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/14 8:0:9组卷:1826引用:11难度:0.5
相似题
  • 1.由四个全等的直角三角形如图所示的“赵爽弦图”,若直角三角形斜边长为2,一个锐角为30°,则图中阴影部分的面积为(  )

    发布:2025/6/15 7:30:2组卷:2199引用:8难度:0.9
  • 2.小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图2,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a2+b2=c2

    发布:2025/6/15 2:30:1组卷:617引用:2难度:0.5
  • 3.利用下面的图形分别给出勾股定理的两种证明.

    发布:2025/6/15 6:0:1组卷:233引用:2难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正