已知函数f(x)=|x-1|-|x+1|+x.
(1)解不等式f(x)<12x-1;
(2)是否存在正实数k,使得对任意的实数x,都有f(x+k)≥f(x)成立?若存在,求出k的取值范围;若不存在,请说明理由.
f
(
x
)
<
1
2
x
-
1
【考点】绝对值不等式的解法.
【答案】(1);
(2)存在,[4,+∞).
(
-
∞
,-
6
)
∪
(
2
3
,
2
)
(2)存在,[4,+∞).
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:9引用:3难度:0.5
相似题
-
1.已知函数f(x)=|x-1|+|2x+4|.
(1)求不等式f(x)>6的解集;
(2)记f(x)的最小值为m,已知a,b,c均为正实数,且a+b+c=m,求1a+b+4b+c的最小值.+9c+a发布:2024/12/29 3:0:1组卷:102引用:4难度:0.5 -
2.已知函数f(x)=|ax+1|+|2x-1|(a∈R).
(1)当a=1时,求不等式f(x)≥2的解集;
(2)若f(x)≤2x在x∈[,1]时恒成立,求a的取值范围.12发布:2024/12/29 6:30:1组卷:101引用:6难度:0.1 -
3.若关于x的不等式|x-1|+|x+2|≤a在R上有解,则实数a的取值范围是 .
发布:2024/12/29 6:0:1组卷:191引用:3难度:0.6