阅读下列材料:
提取公因式法、公式法是初中阶段最常用分解因式的方法,但有些多项式只单纯用上述方法就无法分解,如x2-2xy+y2-16,我们细心观察这个式子就会发现,前三项符合完全平方公式,进行变形后可以与第四项结合再运用平方差公式进行分解,过程如下:
x2-2xy+y2-16=(x-y)2-16=(x-y+4)(x-y-4)
这种分解因式的方法叫“分组分解法”.利用这种分组的思想方法解决下列问题:
(1)分解因式:x2-9y2-2x+6y;
(2)分解因式:x4-3x2y2+2y4;
(3)请比较多项式2x2-5xy+3y2-4y+4与x2-xy-2y2-2y-1的大小,并说明理由.
【考点】因式分解的应用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/17 9:30:1组卷:1598引用:3难度:0.4
相似题
-
1.已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是( )
发布:2025/6/18 2:30:1组卷:9190引用:5难度:0.7 -
2.阅读:已知a、b、c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:因为a2c2-b2c2=a4-b4,①
所以c2(a2-b2)=(a2-b2)(a2+b2).②
所以c2=a2+b2. ③
所以△ABC是直角三角形.④
请据上述解题回答下列问题:
(1)上述解题过程,从第步(该步的序号)开始出现错误,错的原因为;
(2)请你将正确的解答过程写下来.发布:2025/6/18 2:0:1组卷:1912引用:10难度:0.3 -
3.已知a+b=1,则a2+2ab+b2的值为( )
发布:2025/6/18 2:0:1组卷:857引用:2难度:0.9